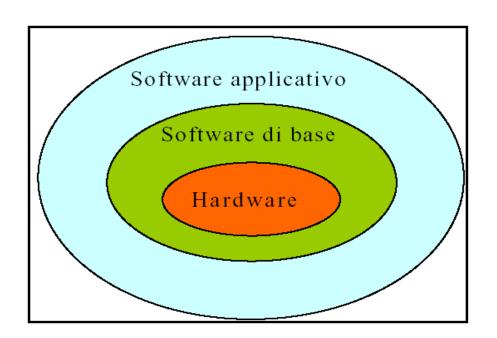
Programma del corso

- □ Introduzione agli algoritmi
- Rappresentazione delle Informazioni
- Elementi di Programmazione
- Architettura del calcolatore
- Reti di Calcolatori (Reti Locali, Internet)

Cos'è un Calcolatore?

Un **computer** (calcolatore) è una macchina in grado di accettare informazioni provenienti dall'esterno, di effettuare su di esse operazioni aritmetiche e logiche e quindi di fornire risultati in forma comprensibile


Per svolgere ciascuna di queste funzioni possiede dei **dispositivi idonei**

Architettura del calcolatore

- Studiare l'architettura del calcolatore significa:
 - Individuare ciascun componente del sistema
 - Conoscere i principi generali di funzionamento di ciascun componente
 - Comprendere come le varie componenti interagiscono

Architettura del calcolatore

- La prima decomposizione di un calcolatore è relativa a due macro-componenti:
 - Hardware
 - Software

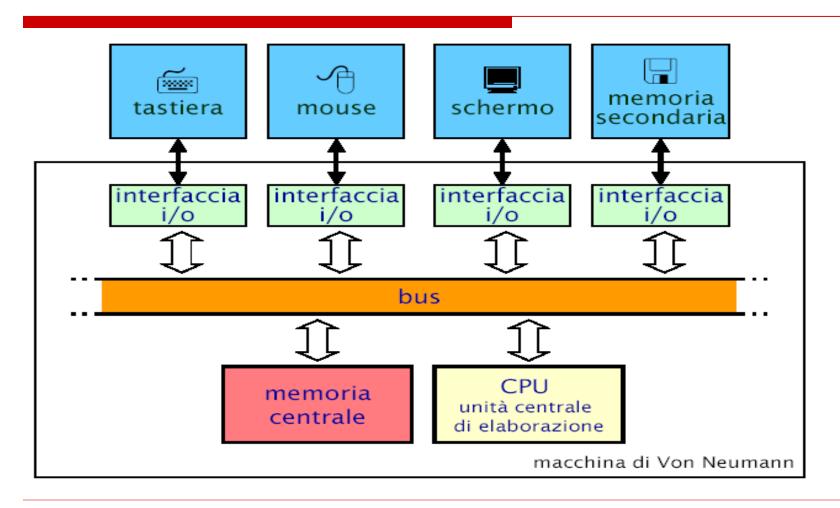
Architettura del calcolatore

- L'architettura dell'hardware di un calcolatore reale è molto complessa
- L'archittettura di von Neumann è un modello semplificato dei calcolatori moderni
 - John von Neumann, matematico ungherese, progettò, verso il 1945, il primo calcolatore con programmi memorizzabili anziché codificati mediante cavi e interruttori

E' composta da 4 tipologie di componenti funzionali:

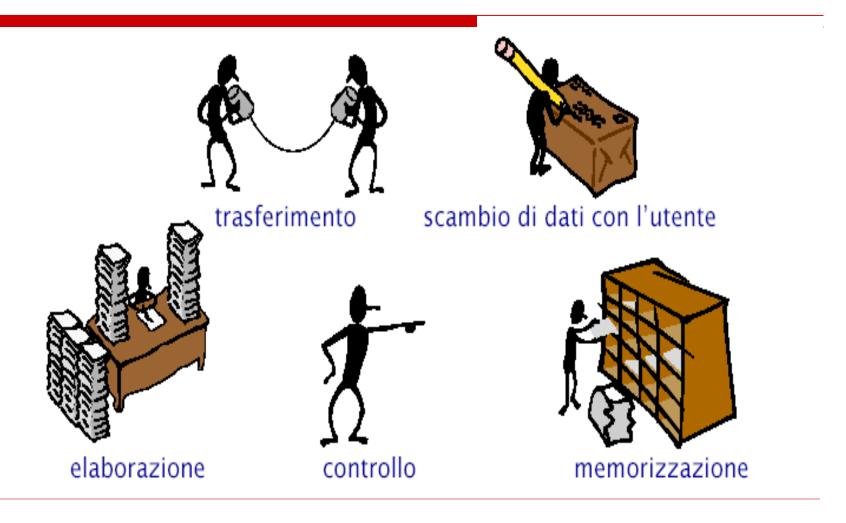
- **□**Unità centrale di elaborazione (CPU)
 - esegue istruzioni per l'elaborazione dei dati
 - svolge anche funzioni di controllo

■Memoria centrale


memorizza e fornisce l'accesso a dati e programmi

□Interfacce di ingresso e uscita

componenti di collegamento con le periferiche del calcolatore


□Bus

svolge la funzionalità di trasferimento di dati e di informazioni di controllo tra le varie componenti funzionali

Il funzionamento di un calcolatore è descrivibile in termini di poche componenti (macro-unità) funzionali

- ogni macro-unità è specializzata nello svolgimento di una tipologia omogenea di funzionalità
- Eccezione: l'unità centrale di elaborazione, che svolge sia funzionalità di elaborazione che di controllo

Trasferimento

- Obiettivo: permettere lo scambio di informazioni tra le varie componenti funzionali del calcolatore
 - trasferimento dei dati e delle informazioni di controllo
- Due possibili soluzioni
 - collegare ciascun componente con ogni altro componente <a>©
 - collegare tutti i componenti a un unico canale (bus) ©
- L'utilizzo di un bus favorisce la modularità e l'espandibilità del calcolatore

Elaborazione

- Un calcolatore sa svolgere poche tipologie di operazioni elementari ma in modo molto efficiente
 - un calcolatore può eseguire centinaia di milioni di istruzioni al secondo
- L'elaborazione dei dati viene svolta dall'unità aritmetico-logica (ALU), che è un componente dell'unità centrale di elaborazione

Elaborazione

- Le istruzioni di un programma corrispondono ad operazioni elementari di elaborazione
 - operazioni aritmetiche
 - operazioni relazionali (confronto tra dati)
 - operazioni su caratteri e valori di verità
 - altre operazioni numeriche

Controllo

- Il coordinamento tra le varie parti del calcolatore è svolto dall'unità di controllo
 - è un componente dell'unità centrale di elaborazione
 - ogni componente dal calcolatore esegue solo le azioni che gli vengono richieste dall'unità di controllo
- Il controllo consiste nel coordinamento dell'esecuzione temporale delle operazioni
 - sia internamente all'unità di elaborazione sia negli altri elementi funzionali

Memorizzazione

- Un calcolatore memorizza
 - i dati, che rappresentano informazioni di interesse
 - i programmi per l'elaborazione dei dati
- La memoria è l'unità responsabile della memorizzazione dei dati
- Una unità di memoria fornisce due sole operazioni
 - memorizzazione di un valore (scrittura)
 - accesso al valore memorizzato (lettura)

Dispositivi di memorizzazione

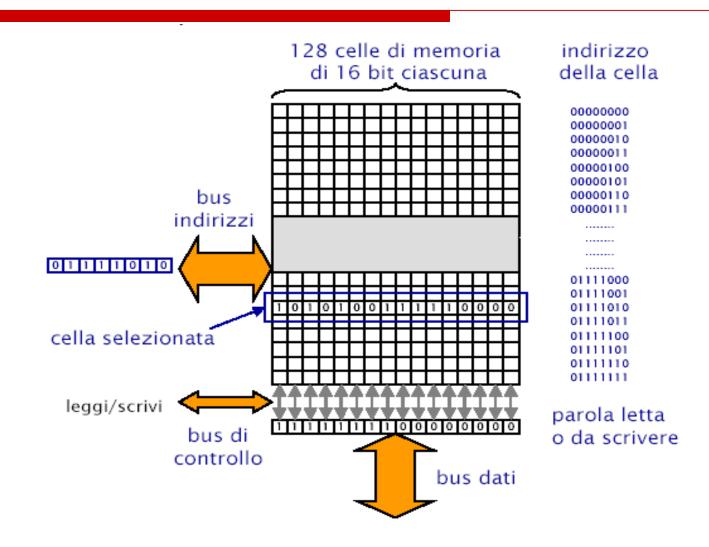
Memorie d'uso

Ram (<u>Random Access Memory</u> o Memoria ad accesso casuale Rom (<u>Read Only Memory</u> o memoria di sola lettura; si attiva all'accensione del Computer)

Memorie di Massa

Hard Disk Floppy Disk Cd -rom Unità di Back-up Penne USB

Memoria centrale


Memoria centrale (o principale)

- E' la componente del calcolatore in cui vengono immagazzinati e da cui vengono acceduti i dati e i programmi (solitamente di tipo RAM - Random Access Memory)
- E' la memoria che può essere acceduta direttamente dal processore
 - è costituita da sequenze di celle (o locazioni)
 - ogni cella può contenere una quantità fissata di memoria (numero di bit), detta parola di memoria

Memoria centrale

- Ogni cella è caratterizzata da
 - un indirizzo, che è un numero che identifica la cella e ne consente l'accesso
 - un valore, che è la sequenza di bit memorizzata dalla cella
- La memoria fornisce le operazioni di
 - lettura: consultazione del valore di una cella con un dato indirizzo
 - scrittura: modifica del valore di una cella con un dato indirizzo

Struttura della RAM

Dimensioni della RAM

□ Spazio di indirizzamento: insieme o numero delle celle indirizzabili direttamente

- Il numero di celle indirizzabili e' una potenza di due. Con:
 - 16 bit si indirizzano 2^{16} celle = 65.536 celle
 - \blacksquare 32 bit si indirizzano $2^{32} = 4.294.967.296$ celle
 -

Esempio: RAM con 2¹⁶ celle

0	00101111
1	11001101
2	01010100
3	11111101
55.536	10000110

Dimensioni tipiche della RAM

- □Nei Personal Computer:
 - Oggi normalmente 1-4 GB
- □Nei Server:
 - Oggi 4+ Gbyte
 - "Moore's Law": x2 ogni 2 anni
- La memoria spesso è espandibile (fino ad un certo limite)

Altre informazioni sulla RAM: la PAROLA o WORD

- □ La parola (word) di un computer: quanti bit possono essere letti/scritti/usati dalla CPU con un unico accesso alla memoria (16, **32**, **64**, 128 bit)
- □ Più o meno: più grande è la **parola**, maggiore è la "potenza" del computer

Proprietà della RAM

- ☐ La RAM e' **veloce**
 - per leggere/scrivere una cella ci vogliono, in media 5--30 nanosecondi (millesimi di milionesimi di secondo = 30 * 10⁹s)
- ☐ la RAM e' **volatile**
 - e' fatta di componenti elettronici, e se togliete l'alimentazione perdete tutto
- La RAM e' costosa (relativamente)

Memorie ROM

- Le memorie ROM (read only memory)
 - permettono solo la lettura dei dati
 - sono persistenti (mantengono il suo contenuto anche quando non c'è alimentazione)
 - in questa memoria si trovano i programmi che servono per l'avvio della macchina, i cosiddetti programmi di sistema e il **BIOS** (Basic Input Output System) sistema di base per il controllo di entrata ed uscita

Memorie secondarie

- Dette anche Memoria di massa
 - memorizza grandi masse di dati
 - i dati memorizzati "sopravvivono" all'esecuzione dei programmi
 - non può essere acceduta direttamente dalla CPU
 - i dati di una memoria secondaria per essere elaborati dal processore devono passare nella memoria centrale

Caratteristiche delle memorie secondarie

non volatilità

 i dati memorizzati non si perdono allo spegnimento del calcolatore (perché memorizzati in forma magnetica o ottica anziché elettronica)

grande capacità

capacità maggiore (anche di diversi ordini di grandezza) rispetto alla memoria centrale

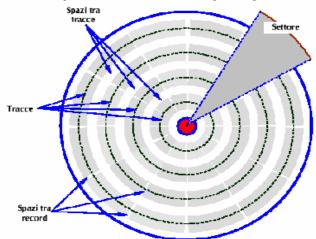
bassi costi

il costo per bit di una memoria secondaria è minore (di diversi ordini di grandezza) rispetto alla memoria centrale

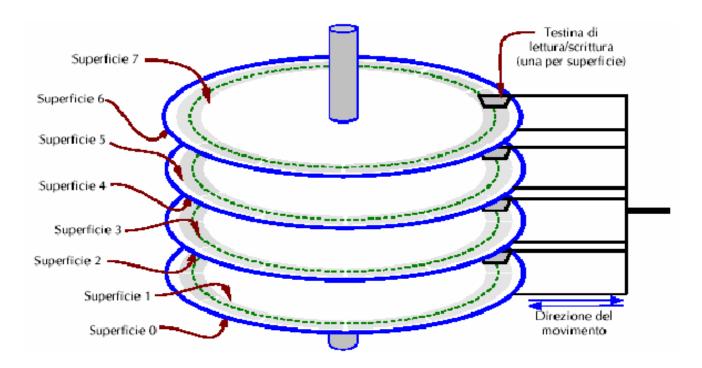
bassa velocità di accesso

tempi di accesso maggiori (di qualche ordine di grandezza) rispetto a quelli della memoria principale

La memoria secondaria


- Programmi e dati risiedono normalmente in memoria secondaria
- Quando si lancia un programma questo viene copiato dalla memoria secondaria in memoria primaria. Questa operazione si chiama caricamento

- E' fatto di supporti magnetici permanenti, gestiti mediante dispositivi meccanici
- Tempi di accesso dell'ordine dei micro/millisecondi
- Spazio disponibile:
 - 80, 20, 160, ..., 300 Gigabyte
 - "Moore's law" anche qui


- Nell'hard disk la memoria e' organizzata in blocchi di dimensione fissa (512B, 1KB,2KB,...) indirizzabili direttamente
- La lettura/scrittura del disco avviene sempre in blocchi, per risparmiare tempo (pensate al tempo perso se si dovesse leggere un byte per volta!)
- Il disco e' quindi formattato in blocchi

- Un disco consiste in un certo numero di piatti con due superfici che ruotano attorno ad un perno centrale
 - ogni superficie dispone di una propria testina di lettura / scrittura

- Le superfici sono organizzate in cerchi concentrici (tracce) e in spicchi di ugual grandezza (settori)
 - un bit corrisponde ad uno stato di polarizzazione (positiva o negativa) del materiale magnetico che costituisce i dischi

Le tracce equidistanti dal centro formano un cilindro.

Memoria primaria vs memoria secondaria

RAM

veloce (nanosec) piccola (Gigabyte) volatile

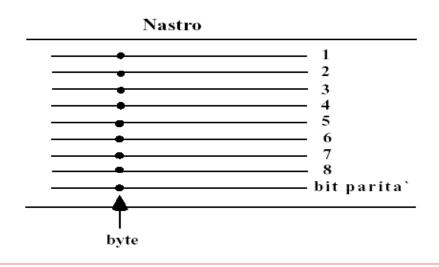
HARD DISK

lenta(microsec) grande (Terabyte) permanente

Notate che, in teoria, il computer potrebbe funzionare con la sola ram o il solo hard disk

Dischi magnetici: floppy disk

- Sono dischi magnetici di piccola capacità, portatili, usati per trasferire informazioni (file) tra computer diversi.
- Sono costituiti da un unico disco con due superfici.
- □ Storicamente ne sono stati creati vari tipi identificati dal loro diametro (3.5, 5.25 e 8 pollici).
 - oggi sopravvivono solo dischetti da 3.5" (1.4 Mbyte)


Nastri magnetici

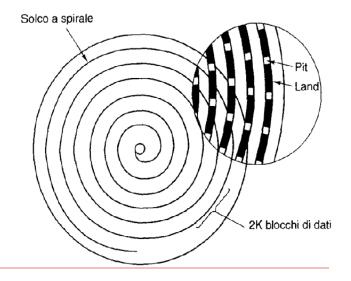
- Vengono usati dagli amministratori di grandi sistemi di computer per creare periodicamente copie (Backup) del contenuto degli hard disk, in modo da salvare i dati qualora se ne guastasse uno.
- Accesso sequenziale: la lettura/scrittura è molto lenta (può richiedere alcune ore), per questo l'operazione di backup viene lanciata tipicamente durante la notte.

Nastri magnetici

- Sono nastri di materiale magnetizzabile raccolti su supporti circolari, o in cassette.
- Sul nastro sono tracciate piste orizzontali parallele
- I dati sul nastro sono organizzati in zone contigue dette **record**, separate da zone prive di informazione (interrecord gap)

Dispositivi ottici

- CD-ROM (Compact Disk): sono esattamente gli stessi CD usati per la musica
- la sigla ROM (Read Only Memory) indica il fatto che i dati, una volta scritti su CD, sono indelebili e potranno essere soltanto letti
- □ la capacità tipica è di 650-700 MByte (che nei CD audio corrisponde a 74-80 minuti), ma esistono anche modelli leggermente più capienti.
- CD-RW può essere scritto più volte


Dispositivi ottici

- DVD (Digital Versatile Disk): Esteriormente sono in tutto simili ai CD-ROM, ma possono contenere da 4.7 a 8.7 GByte (cioè 6-12 volte la capacità di un normale CD).
- Sono usati da alcuni anni soprattutto per i film digitali, tuttavia possono benissimo contenere anche i normali dati come i CD-ROM.
- Per leggere i DVD occorre un lettore appropriato. Il lettore DVD normalmente è in grado di leggere anche i normali CD-ROM.
- □ DVD-RW, DVD+RW, Blu-ray disc, ...

Dischi ottici

- La superficie di un disco presenta una successione di tratti disposti secondo un'unica traccia a spirale
 - pit: tratto di superficie avvallata
 - land: tratto di superficie liscia
- □ Il passaggio da pit a land (e viceversa) rappresenta
 1 mentre l'assenza di variazione rappresenta 0

riflettono raggi luminosi in modo diverso

