INTRODUZIONE ALL' INFORMATICA

Docente (teoria)

- Docente: Wolfgang Faber
 - Studio: Dipartimento di Matematica Cubo 30B – 2° Piano
 - Ricevimento: dietro appuntamento email
- ☐ Sito del corso

http://www.wfaber.com/teaching/introinfo2012/

Docenti (laboratorio, esercitazione)

Salvatore lelpa

Programma del corso

- Introduzione agli algoritmi
- Rappresentazione delle Informazioni
- Architettura del calcolatore
- Reti di Calcolatori
- Elementi di Programmazione

Programma del corso (laboratorio)

- Ambiente Operativo Windows
- Elaborazione dei Testi
- □ Strumenti e Servizi Internet
- □ Fogli Elettronici
- Cenni di Programmazione

Laboratori

- □ Matricole pari:
 - Martedì, 8.30 11.30
- □ Matricole dispari:
 - *Mercoledì*, 15.30 18.30

□ Laboratorio 31B, secondo piano

Prove di accertamento

- Prova di teoria
- Prova di laboratorio
- Voto: costituito dalle due prove

Alternativa: ECDL

Chi ha l'ECDL **può** (ma sicuramente non deve) optare di non sostenere la prova in laboratorio:

- Prova di teoria
- Esibizione dell'ECDL alla prova di teoria
- Voto: costituito solo dalla prova di teoria

Testi consigliati

□ Sciuto, Bonanno, Fornaciari, Mari Introduzione ai Sistemi Informatici McGraw-Hill 1997

☐ Curtin, Foley, Sen, Morris Informatica di Base McGraw-Hill 1999

Programma del corso

- Introduzione agli algoritmi
- Rappresentazione delle Informazioni
- □ Architettura del calcolatore
- Reti di Calcolatori (Reti Locali, Internet)
- Elementi di Programmazione

Cosa è l'Informatica?

- Scienza degli elaboratori elettronici (Computer Science)
- Scienza dell'informazione

Scienza della rappresentazione, memorizzazione, elaborazione e trasmissione dell'informazione

Cos'è l'informatica? (1)

Tutto ciò che riguarda il **trattamento (automatico) dell'informazione** codifica, memorizzazione, elaborazione, trasmissione...

Esempio: Google Earth

- Informazioni: mappe
- Elaborazioni:
 - calcolo della prospettiva
 - gestione degli "hot spot"
 - definizione degli itinerari
 - etc...
- Trasmissione: mappe in rete

Cos'è l'informatica? (2)

Esempio: Simulazioni

- Informazioni: dati geologici
- Elaborazioni:
 - modellazione della realtà
 - acquisizione dati
 - simulazioni
 - rappresentazioni grafiche

Cos'è l'informatica? (3)

Esempio: <u>SUDOKU</u>

- Informazioni:
 - schema iniziale
 - regole di gioco
- Elaborazioni:
 - passi da fare per completare lo schema

```
x bash
kali@Odysseus[529]:/kali/sudokusolver> cat example.sdk
ali@Odysseus[530]:/kali/sudokusolver> sudokusolve example.sdk
kali@Odysseus[531]:/kali/sudokusolver> 📗
                                    sudoku_demo_01.avi
```

Elaboratore elettronico (o "computer" o "calcolatore")

- È uno strumento per la rappresentazione, la memorizzazione e l'elaborazione delle informazioni.
- È programmabile: può essere predisposto per eseguire un particolare insieme di azioni, allo scopo di risolvere un problema.

Cosa possiamo fare con un calcolatore?

- □ Word Processing. Memorizzare, elaborare testi.
- Basi di Dati. Memorizzare grossi archivi di dati, recupero veloce, produrre informazioni globali.
- Accesso Remoto. Trasmissione e recupero di informazioni.
- Calcolo. Risolvere problemi matematici.
- □ Simulazioni. Rappresentare e elaborare informazioni che simulano l'ambiente reale.
- ⊔

Utilizzo di un elaboratore

- Come utente:
 - Uso software applicativo esistente per creare documenti e interfacce grafiche, effettuare calcoli, navigare in rete
- Come sviluppatore:
 - Creo nuovi programmi basato sullo strato software esistente
 - Nuovi programmi applicativi
 - Nuovi programmi di sistema (cioè che fanno funzionare il calcolatore)

Architettura dei Sistemi Informatici

- Sistemi Informatici: PC, Reti di Calcolatori, ...
- Architettura: insieme delle componenti del sistema, descrizione delle loro funzionalità e della loro interazione
- Suddivisione principale:
 - Hardware
 - Software

Hardware

- Unità di Elaborazione (Processore o CPU):
 - Svolge le elaborazioni
 - Coordina il trasferimento dei dati
 - Esegue i programmi
- Memoria Centrale (RAM):
 - Memorizza dati e programmi per l'elaborazione
 - Volatile
 - Accesso rapido
 - Capacità limitata

Hardware

- Memoria Secondaria (es. Hard disk,floppy)
 - Grande capacità
 - Persistente
 - Accesso piu lento della RAM
- Unità Periferiche
 - Interfaccia verso l'esterno
 - Terminali (tastiera, video)
 - Stampanti

Hardware

- Bus di Sistema
 - Collega le altre componenti
 - □ RAM
 - Memorie Secondarie
 - Periferiche
 - Insieme di collegamenti di vario tipo

Esempi di Sistemi Informatici: Personal Computer

- Contenitore con
 - CPU, RAM
 - Memoria Secondaria
 - Disco Fisso
 - Unità per Dischetti/CD Penne USB
- Monitor
- Tastiera, Mouse

Altri Sistemi Informatici

- □ Workstation
 - Calcolatore con elevate prestazioni
- □ Mini-computer
 - Servono reti di terminali con pochi utenti
- □ Main-frame
 - Servono reti di terminali con centinaia di utenti
- □ Calcolatori High Performance
 - Solitamente calcolatori composti da più CPU collegati in parallelo (es:Dual/Quad Core, Cluster, ecc)

Altri Sistemi Informatici

- Reti di Calcolatori
 - Reti Locali: collegano terminali vicini tra loro; i terminali usufruiscono di servizi quali stampanti di diverso tipo, memorie di massa,...
 - Reti Geografiche: collegano dei calcolatori (detti) host a medio-grandi distanze; ad esempio possono collegare diverse reti locali tra loro

Software

- □ Software di base:
 - Dedicato alla gestione dell'elaboratore
 - Esempio: Sistema Operativo (Windows, Linux, etc)
- □ Software applicativo:
 - Dedicato alla realizzazione di specifiche applicazioni
 - Esempio: programmi per scrittura, gestione aziendale, navigazione su internet, ecc

Come "ragiona" il computer

Problemi e algoritmi

II problema

 Abbiamo un problema quando ci poniamo un obiettivo da raggiungere e per raggiungerlo dobbiamo mettere a punto una strategia

Alcuni problemi tipici dell'informatica

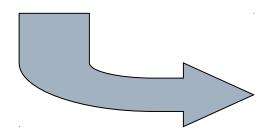
Ricerca di informazioni

- Trovare il numero di telefono di una persona in un elenco
- Individuare il numero più piccolo di una sequenza
- Stabilire se una parola precede alfabeticamente un'altra

Problemi di elaborazione di informazioni

- Calcolare il costo totale di un certo numero di prodotti
- Trovare perimetro e area di una figura geometrica
- □ ...

Problemi di ottimizzazione


☐ Trovare tra tutte le soluzioni possibili del problema quella che rende minimo un certo fattore, per esempio scegliere il mezzo di trasporto più economico per andare a Parigi oppure quello con il quale si impiega meno tempo

Risolvere un problema

- Come si costruisce la soluzione a un problema?
- Qual è il giusto "punto di partenza" per pensare la soluzione a un problema?
- Quali metodologie e tecniche usare?

Descrizione procedimento risolutivo

Individuazione di una sequenza di passi che, partendo dai dati noti, arrivi a dare la soluzione.

Definizione

Algoritmo

Algoritmo

- Un algoritmo è una sequenza finita di operazioni elementari che porta alla risoluzione in un tempo finito una classe di problemi.
- In generale un algoritmo può essere visto come una funzione da un dominio d'ingresso ad uno d'uscita

Algoritmi: proprietà fondamentali

- Eseguibilità: ogni azione deve essere eseguibile da parte dell'esecutore dell'algoritmo in un tempo finito
- Non-ambiguità: ogni azione deve essere univocamente interpretabile dall'esecutore
- □ Finitezza: il numero totale di azioni da eseguire, per ogni insieme di dati di ingresso, deve essere finito.

Algoritmi equivalenti

Due algoritmi si dicono **equivalenti** quando:

- hanno lo stesso dominio di ingresso;
- hanno lo stesso dominio di uscita;
- in corrispondenza degli stessi valori nel dominio di ingresso producono gli stessi valori nel dominio di uscita.

Algoritmi equivalenti

Due algoritmi equivalenti:

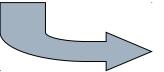
- forniscono lo stesso risultato
- ma possono avere diversa efficienza
- e possono essere profondamente diversi!

Esempio: moltiplicare tra loro due numeri

<u> 144</u>

Esecuzione

Metodo Esecutore: una Risolutivo (algoritmo) macchina astratta capace di eseguire le azioni specificate Esecutore dall'algoritmo. DATI RISULTATI


Algoritmi e programmi

Algoritmo

Sequenza finita di passi che risolve in tempo finito un problema.

Codifica

Fase di scrittura di un algoritmo attraverso un insieme ordinato di frasi ("istruzioni"), scritte in un qualche **linguaggio di programmazione**, che specificano le azioni da compiere.

Programma

Testo scritto in accordo con la sintassi e la semantica di un linguaggio di programmazione.

PROBLEMA

ALGORITMO

PROGRAMMA

Linguaggi di Programmazione

- Linguaggi per esprimere in maniera rigorosa un algoritmo
- Linguaggio macchina (seq. Istruzioni)
- Linguaggi ad alto livello (vicini al ling. naturale)
 - Esempi:
 - Pascal
 - □ C e C++
 - Java
 - □ Basic

Esempio di programma

```
Sub SOMMA()
  Dim A, B as Integer
 A = InputBox("Immetti un
   numero")
  B = InputBox("Immetti un
    secondo numero")
  Print "Somma:"; A+B
End Sub
```

Esempio: potenza

- Problema: Calcolare a elevato alla n (a^n)
- Utilizziamo le variabili N, Ris
- □ Inizialmente Ris=1 e N=n
- □ Algoritmo:
- \square Fino a che N>0
 - Calcola Ris × a e memorizzalo in Ris
 - Decrementa N
- □ Correttezza:
- Al termine Ris=a^n

Esempio in Pseudo Pascal

```
Program potenza;
Integer Ris,N,A;
Read(N);Read(A);
Ris=1;
While (N>0) do
    Ris=Ris*A;
    N=N-1;
Print(Ris);
```

Riassumendo...

- Ogni elaboratore è una macchina in grado di eseguire azioni elementari su dati
- L'esecuzione delle azioni elementari è richiesta all'elaboratore tramite comandi chiamati istruzioni
- Le istruzioni sono espresse attraverso frasi di un opportuno linguaggio di programmazione
- Un programma è la formulazione testuale di un algoritmo in un linguaggio di programmazione
- Un algoritmo è il processo risolutivo di un problema

Esistono problemi che un elaboratore non può risolvere?

Sì. Ci sono problemi non calcolabili da nessun modello di calcolo reale o astratto

□ Esempio: data una funzione f: N→ N, stabilire se f(x) è costante per ogni valore di x

Esistono problemi che un elaboratore non può risolvere?

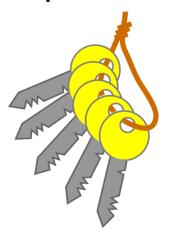

- Esempio. Dato un insieme di immagini di paesaggi, determinare quello più rilassante.
- □ Più in generale, quando il problema presenta **infinite** soluzioni, o non è stato trovato per esso un metodo risolutivo o è dimostrato che non esiste un metodo risolutivo

Diagramma di flusso o diagrammi a blocchi

- È uno metodi più comuni usati per la rappresentazione di algoritmi.
- Si presenta come un insieme di figure geometriche collegate da frecce.

Problema della chiave

Trovare in un mazzo di chiavi quella che apre il lucchetto

Assunzioni:

- una tra le chiavi apre la porta
- al buio, si prende una chiave a caso per volta

Inizio

 □ Tutti i diagrammi a blocchi cominciano con un'ellisse che contiene la parola inizio

Dati in ingresso

Dati in ingresso

□ I dati in ingresso sono i dati noti del problema, quelli che devono essere elaborati per arrivare alla soluzione

Operazioni

Operazioni

Le operazioni da svolgere sui dati sono racchiuse in rettangoli

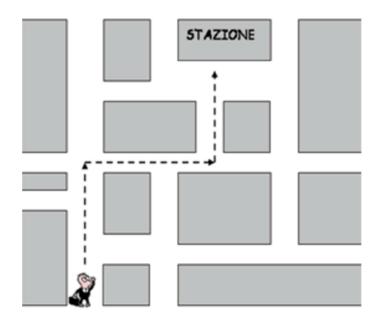
Scelta

 Quando si deve fare una scelta tra due possibilità si usa il rombo

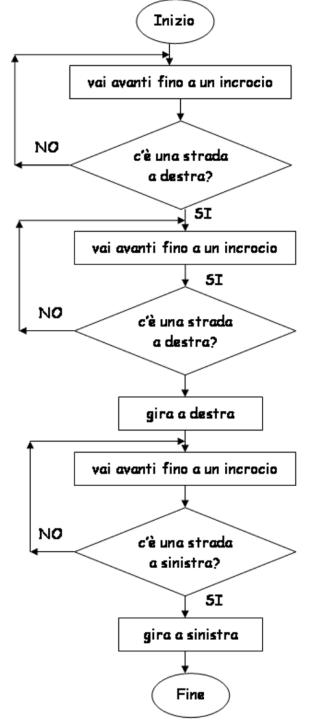
Dati in uscita

Dati in uscita

□ I dati in uscita sono quelli che si vuole conoscere e costituiscono il risultato dell'elaborazione


Fine

 Ogni diagramma di flusso si conclude con un'ellisse che contiene la parola fine


Problema della stazione

Come si arriva alla stazione?

Operazioni elementari possibili:

- Andare avanti fino a un punto di incrocio
- Girare

